Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
J Expo Sci Environ Epidemiol ; 32(5): 751-758, 2022 09.
Article in English | MEDLINE | ID: covidwho-1815512

ABSTRACT

BACKGROUND: Evidence is needed on the presence of SARS-CoV-2 in various types of environmental samples and on the estimated transmission risks in non-healthcare settings on campus. OBJECTIVES: The objective of this research was to collect data on SARS-CoV-2 viral load and to examine potential infection risks of people exposed to the virus in publicly accessible non-healthcare environments on a university campus. METHODS: Air and surface samples were collected using wetted wall cyclone bioaerosol samplers and swab kits, respectively, in a longitudinal environmental surveillance program from August 2020 until April 2021 on the University of Michigan Ann Arbor campus. Quantitative rRT-PCR with primers and probes targeting gene N1 were used for SARS-CoV-2 RNA quantification. The RNA concentrations were used to estimate the probability of infection by quantitative microbial risk assessment modeling and Monte-Carlo simulation. RESULTS: In total, 256 air samples and 517 surface samples were collected during the study period, among which positive rates were 1.6% and 1.4%, respectively. Point-biserial correlation showed that the total case number on campus was significantly higher in weeks with positive environmental samples than in non-positive weeks (p = 0.001). The estimated probability of infection was about 1 per 100 exposures to SARS-CoV-2-laden aerosols through inhalation and as high as 1 per 100,000 exposures from contacting contaminated surfaces in simulated scenarios. SIGNIFICANCE: Viral shedding was demonstrated by the detection of viral RNA in multiple air and surface samples on a university campus. The low overall positivity rate indicated that the risk of exposure to SARS-CoV-2 at monitored locations was low. Risk modeling results suggest that inhalation is the predominant route of exposure compared to surface contact, which emphasizes the importance of protecting individuals from airborne transmission of SARS-CoV-2 and potentially other respiratory infectious diseases. IMPACT: Given the reoccurring epidemics caused by highly infectious respiratory viruses in recent years, our manuscript reinforces the importance of monitoring environmental transmission by the simultaneous sampling and integration of multiple environmental surveillance matrices for modeling and risk assessment.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Motor Vehicles , RNA, Viral/analysis , Respiratory Aerosols and Droplets , Universities
2.
Environmental Research Letters ; 15(10), 2020.
Article in English | Web of Science | ID: covidwho-894526

ABSTRACT

The COVID-19 pandemic has created substantial and dynamic disruptions in society, personal behavior, and potentially chronic sound exposures, which are associated with hearing loss, cardiovascular disease, and other health impacts. Leveraging preliminary data from our unique nationwide Apple Hearing Study, we explored changes in personal sound exposures resulting from COVID-19-related social distancing. Volunteer participants opted to share environmental sound data from their Apple Watch and headphone sound data from their iPhone. Participants for this analysis were chosen from four states which exhibited diverse responses to COVID-19. Equivalent continuous average sound exposures (in A-weighted decibels, dBA) were computed per person-day and normalized to 8 hour L(EX8h)exposures. Daily mean L(EX8h)exposures across two time periods, a baseline period (before the first known US COVID-19 death at the time of analysis) and an intervention period (starting with each state's first COVID-related public health social distancing announcement and ending on April 22, 2020) were defined to assess changes in sound exposure. We modeled sound levels across 5,894 participants and 516,729 monitored days using a linear mixed-effects model with random effects for participant. The overall reduction in LEX8h between baseline and intervention was 2.6 +/- 0.05 dBA (mean +/- SE). There was a significant day-of-week effect during the baseline period, with the lowest exposures on Monday and the highest on Saturday. This effect was not noted during the intervention period. COVID-19 social distancing measures were associated with an approximately 3 dBA reduction in personal environmental sound exposures;this represents a substantial and meaningful reduction in this harmful exposure. Our analysis demonstrates the utility of everyday use devices in detecting behavior and exposure changes associated with the COVID-19 pandemic, and the usefulness of longitudinal, large-scale characterization of personal exposures and health impacts using wearable technology.

SELECTION OF CITATIONS
SEARCH DETAIL